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Sonoelasticity is a rapidly evolving medical imaging technique for visualizing hard tumors in 
tissues. In this novel. diagnostic technique, a low-frequency vibration is externally applied to excite 
internal vibrations within the tissue under inspection. A small stiff inhomogeneity in a surrounding 
tissue appears as a disturbance in the normal vibration eigenmode pattern. By employing a properly 
designed Doppler detection algorithm, a real-time vibration image can be made. A theory for 
vibrations, or shear wave propagation in inhomogeneous tissue has been developed. A tumor is 
modeled as an elastic inhomogeneity inside a 1ossy homogeneous elastic medium. A vibration 
source is applied at a boundary. The solutions for the shear wave equation have been found both for 
the cases with tumor (inhomogeneous case) and without tumor (homogenous case). The solutions 
take into account varying parameters such as tumor size, tumor stiffness, shape of vibration source, 
1ossy factor of the material, and vibration frequency. The problem of the lowest detectable change 
in stiffness is addressed using the theory, answering one of the most critical questions in this 
diagnostic technique. Some experiments were conducted to check the validity of the theory, and the 
results showed a good correspondence to the theoretical predictions. These studies provide basic 
understanding of the phenomena observed in the growing field of clinical Sonoelasticity imaging for 
tumor detection. 

PACS numbers: 43.80.Qf, 43.80.Jz, 43.80.Vj 

LIST OF SYMBOLS E 

displacement field vector v 
longitudinal component of the displacement field Ct 
vector Cs 
shear component of the displacement field vector w0 
density Q0 

Young's modulus (stiffness) 
Poisson's ratio 

speed of the longitudinal wave 
speed of the shear wave 
angular vibration frequency 
Q factor of the system 

INTRODUCTION 

Palpation is a traditional tumor detection method that 
identifies abnormal regions of increased stiffness (elasticity). 
But the method is limited to only those tumors which occur 
close to an accessible surface. Conventional medical imag- 
ing, including MRI, CT, mammography, and gray scale ul- 
trasound, is insensitive to stiffness as an imaging parameter 
and often fails to reveal the extent or existence of tumors 

which, upon pathologic examination, are found to be palpa- 
bly more stiff than surrounding normal tissues. 

Sonoelasticity imaging is a method of "remote palpa- 
tion" that identifies hard tumors. This technique combines 
externally applied vibrations with Doppler detection of the 
response throughout tissue, to indicate abnormal regions. We 
define Sonoelasticity as consisting of sinusoidal steady state 
vibrations, with externally applied stimulus, and production 
of modal patterns in some organs, and Doppler deteztion of 
vibration to generate an image. Sohoelasticity imaging is re- 
lated to three much larger, older, and somewhat overlapping 
fields: 

(1) the study of vibrating targets using coherent radia- 

tion (laser, sonar, and ultrasound) (Holen et al., 1985; Cox 
and Rogers, 1987; Taylor, 1976, 1981), 

(2) the study of tissue elastic constants (biomechanics) 
(Fung, 1981; Levinson, 1987; Parker eta!., 1993), and 

(3) the study of tissue motion using imaging systems 
(ultrasound, MRI, stroboscopes, and others) (Oestreicher, 
1951; Von Gierke et aL, 1952; Wilson and Robinson, 1982; 
Dickinson and Hill, 1982; Eisenscber et al., 1983; Bimholz 
and F•wrell, 1985; Tristam etal., 1986, 1988; Axel and 

Dougherty, 1989; Adler et al., 1989, 1990). 
To accurately interpret sonoelasticity images, we must 

understand the nature of tissue vibrations under different cir- 

cumstances. There has been some preliminary work on vi- 
bration modal patterns in tissue (Lerner and Parker, 1987a, 
1987b; Lerner et al., 1988, 1990; Parker eta!., 1990; Parker 
and Lerner, 1992; Lee et al., 1991; Huang, 1990; Gao eta!., 
1993). Other vibration techniques (Krouskop et al., 1987; 
Yamakoshi et at., 1990), and also an important class of static 
and quasistatic techniques have been independently devel- 
oped by Ophir and others (Ophir et al., 1991; Ponnekanti 
et at., 1992; Yemelyanov et al., 1992; Cdspedes et ai., 1993; 
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O'Donnell et al., 1993; Skovoroda et al., 1994; O'Donnell 
et aL, 1994). In addition, other approaches to tissue motion 
and elasticity measurements have been proposed (Meunier 
et aœ, 1989; Ryan et al., 1992, 1993; Javier and Pedersen, 
1994). 

A novel theory for vibrations or shear wave propagation 
in inhomogeneous tissue is developed in this paper. The 
theory describes the characteristic patterns we expect to see 
in a sonoelasticity image, especially for tumor recognition. 
Phantom and in vivo experiments were conducted to cor- 
roborate the theory. 

Inside both the homogeneous region (tissue) and the inhomo- 
geneous region (tumor), the field vector satisfies the same 
wave equations (5), but with different Ct and C s . We assume 
that v and p do not vary significantly for tumor and normal 
tissues. The most distinguishable mechanical property that 
separates tumor from normal tissue is the stiffness E (Parker 
et al., 1990, 1993). Over the whole medium, we can write E 
as 

œ(x)=Eo+E'(x), (7) 

with 

I. THEORY 

A. Tumor model 

We begin by modeling a tumor as an elastic inhomoge- 
neity inside a lossy homogeneous elastic medium. For ex- 
ample, the media stiffness is a constant E 0, except the small 
area around (xo,Yo) has the stiffness Eo+E'. When we ap- 
ply boundary conditions and a driving vibration force, we 
want to compare the vibration patterns of this medium with 
and without the inhomogeneity. 

B. Displacement wave equation 

We start from the basic field wave equations. For a gen- 
eral linear and isotropic material, the displacement field vec- 
tor •(x,t) satisfies the following equation (Landau and Lift- 
shitz, 1970): 

E E 82• 
2(1+ v) V2•+ 2(1 +v)(1-2v) VV-•?=p •-. (1) 
The displacement field vector • can be decomposed into 

longitudinal and shear components (• and A are the poten- 
tial functions for longitudinal and shear components, respec- 
tively) 

•=V•+VxA (2) 

= •,+ •. (3) 

The two components satisfy, respectively, 

Vx•t=0, (4a) 

V.s=O. (4b) 

As derived in the reference (Landau and Liftshitz, 1970), Eq. 
(1) will give the homogeneous longitudinal and shear wave 
equations 

1 02•l = 0 ' (Sa) - 2 
1 o2• _ 

-3-F =o, (Sb) 
where 

E 
(6a) 

2p(l + v)(1-2u)' 

E 
2 _ (6b) Cs-2p(l +v)' 

= I E', for tumor area L•'L•, centered at (x0,Yo), 
E'(x) [0, for surrounding tissue. 

(8) 

Then we can derive a general expression for the speed of the 
shear wave: 

Cs2(x) = E(x)/(2p( 1 + v) ) 
=Eo/(2p(1 + u))+ E'(x)/(2p(1 + v)) 

= (1 +E'(x)/Eo)Eo/(2p( 1 + •)). (9) 

If we denote 

Co2= Eo/(2p( I + v) ), (10) 

y(x)=œ'(x)/e0. (11) 

then expression (9) could be simplified as 

= C2o(1 + (12) 

and y(x) should satisfy 

E'IE=y, in tumor area L}L•, around (x0,Y0), 7(x)= 0, everywhere else. 
03) 

So instead of writing two shear wave equations for both the 
homogeneous and inhomogeneous region, we may write one 
equation for the entire medium: 

I a2•j• 
V2•s C•(i+T(x)) Ot 2 =0. (14) 
We have chosen to concentrate on shear waves, since 

low-frequency longitudinal waves have wavelengths that are 
too large compared to organs of interest at the frequencies 
used in SOhOelasticity imaging (Parker and Lerner, 1992). 
Furthermore, for simplicity, we will consider the two- 
dimensional case. If we denote this two-dimensional plane as 
the 3/- Y plane, we will only consider the Z component of the 
displacement vector •s- Thus the letter • represents the z 
component of displacement in all later discussions. The so- 
lutions for rectangular enclosures are given for simplicity, 
although these can be expanded to spherical, cylindrical, el- 
liptical, and other regular geometries. Four cases are given to 
cover a range of complexity, and build an understanding of 
the simpler cases. 
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C. Case one 

The case of the homogeneous, lossless medium without 
source: For a homogeneous rectangle, on all four boundaries 
x=0, x=La, y=0, and y=L o, the displacement is pre- 
scribed as se=0 on rigid walls. 

Solution: Begin with Eq. (14). In this case the material is 
homogeneous, 'y(x)=0 over the rectangle, so the wave equa- 
tion becomes 

I 02s • 
V2•- c• ot 2 =0. 

The sinusoidal steady-state solution is well known as 

•= •o exp(iwot)sin(k,,x)sin(k,Y), 

with k,. = m rr/L.. k.= n*r/L b (m and n are integers). and 
') 2 2 2 

Co( k m + kn). wfi= Thus eigenmodes occur at predictable 
eigenfrequencies. 

D. Case two 

The case of the homogeneous, 1ossy medium with a vi- 
bration source on one side: For a homogeneous rectangle. on 
boundaries x= 0, y = 0, and y = Lt,. the displacement ½ is 
zero. On the fourth boundary x = L,, •= % 
Xexp(iwot)sin(kjy). Here ka=Jrr/Lo, J is an integer, and 
e 0 is a real constant. The material is 1ossy. 

Solution: The term y(x)=0 throughout the homogeneous 
medium. As the system is Iossy, a relaxation term can be 
included in Eq. (14) (Kinsler et al., 1982): 

i R 

EO 

•= • exp( iwot)sin( k jY) 

exp(ik•nx- ax) - exp( - ik,.x + otx) 
x (21) 

exp( ik.L.- otL.)- exp( - ik,•L. +otL.)' 

Separating the real and imaginary part, Eq. (21) becomes 

s •= e 0 sin(kjy)[(G + iH)12F] exp(iwot), (22) 

with 

(15) F= ((exp( -otL,) - exp(o•La))Cos(kmLa)) 2 

4- ((exp( -- otL•) q- exp(aLa))sin(kmLa)) 2, (23a) 

G = (exp( -OlLa) -- exp(aLa)) (exp( - ax) 
(16) 

- exp( ax ) ) cos(kr•L. ) cos(k,•x ) + ( exp( -otL.) 

+ exp(aL•)) (exp( - otx) 

+ exp(ax) ) sin(k,•L.) sin(k,•x), (23b) 

H = (exp( - aL,,) - exp(aLa)) (exp( - ax) 

+ exp(otx))cos(k,.La)sin(k,.x ) - (exp( - aLa) 

+ exp(otL•)) (exp( - otx) 

- exp(ax))sin(k,.L•)cos(k,.x). (23c) 

Only the real part of •j is the solution, which is 

G cos(wot)-H sin(w0t) 
Re(•) = e 0 sin(kjy) 2F (24) 

Since nltrasound Doppler devices can easily detect the vibra- 
tion mnplitude, we are also interested in that function of 
position: 

(17) 
IRe(•)l = e0 sin(kjy)( •/G 2 + H2/2F). (25) 

(with woplR = Qo, which is the Q factor of the system at 
W0). 

Assuming sinusoidal dependence •=•exp(iwot), the 
above equation becomes 

08) V2•+ K2•-(iK2/Qo)•=O , 

with K= wolC o, which is the vibration wave number. 
Given the boundary condition, we know the forra of the 

solution should be 

•= E 0 sin[(k,. + iot)x]sin(kjy). (19) 

Substituting this into the wave equation (18) and the source 
term, we find 

2 4 2 k,.=(l/.•/-•) k•---•--•,+K/Qo, (20a) 

ot = - K2/2kmQo. (20b) 

E0 

Eø- sin[ (k,• + ia)L,]' (20c) 
with k•= K 2 - kj 2. 

We could rewrite the solution given by Eq. (19) in the 
conventional exponential form: 

E. Case three 

The case of the inhomogeneous, lossy medium with a 
vibration source: Again we begin with a rectangle with di- 
mension L a X L b . On the boundaries x = 0, y - 0, and y = Lt,, 
the boundary condition is •=0. The fourth boundary x= L,• 
satisfies •=e 0 exp(iwot)sin(k•y). % is a real constant. The 
material is 1ossy. The stiffness of the inhomogeneous area is 
Eoq- E' with dimension L• x L• (assumed small), which is 
located at (x 0,y0). 

Solution: Combining the 1ossy term of Eq. (17) with the 
inhomogeneous wave equation (14) produces 

I 02/5 R o•j 
--=0 (26) V2•:-C•(I+y(x)) 0t 2 pC•(l+y(x)) clt 

(with wop/R = Qo, which is the Q factor of the system at 

Assuming the sinusoidal time dependence 
•=• exp(iwot ), the equation above becomes 

K 2 iK 2 

V2•+ [1 + T(x)] •- Qo[1 + ¾(x)] •=0, (27) 
where K= wolC o and Qo = wop/R. 

Without changing the equation above, we rewrite it as 
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iK • K•¾(x) iK • 7(x) 
V2•+ K2•- •o •--= 1 + 7(x--•--• •- Q•- 1 + y(x• •' (28) 

Denoting and recalling the definition 
of y(x) given by Eq. (13), we summarize the behavior of 

1 71(1 + y), in the area L•'L; around (xo,Y0), 
•(x) = [ 0, everywhere else. 

(29) 

Splitting • into incident and scattered waves, 

•= •,+ •s. (30) 

where •i stands for the incident wave and • for the scattered 
wave. •i satisfies the homogeneous 1ossy wave equation (18), 
which we rewrite for the sake of emphasis 

V2•i q- K2•i - (iK2/Qo) •i = 0. (31) 

Substituting Eqs. (30) and (31) into Eq. (26), the latter be- 
comes 

Vs+K _ i 
As/•(x) is zero everywhere, except around (x 0,yo) where it 
is 3//(1+ y), we may assume that the scattered wave is much 
smaller than the incident wave: • •i, and discard the term 
/•(x)K2( 1 -i/Qo)• s . [This is analogous to the Born approxi- 
mation for longitudinal wave scauedng (Morse and Ingard, 
1968).] This results in 

i 

2 iK2 •s= ,(x)K2( l - •00) •,. (33) 
Equation (33) is the governing equation for shear wave 
propagation in a 1ossy, inhomogeneous, elastic medium un- 
der the "sonoelastic Born approximation." Case two gives 
the solution of the incident wave, with the same boundary 
conditions defined as above. So our problem now is to obtain 
the solution of the scattered wave •,. 

As •= •i+ •s, •s should have the following boundary 
condition: on all four boundaries, •, = 0. With this boundary 
condition, we know that the solution of •s can be completely 
determined by the following series expansion: 

•= • (Avq+ iBvq)sin(kex)sin(kqy), (34) 
pq 

where ke=p'n'lL a , kq=q•rlLb, and p and q are integers. 
Substituting the •, given by Eq. (34) into the left-hand 

side of Eq. (33), we have 

[ 2 2 iK2\ 
pq 

X sin(kex) sin(kqy). (35) 
Expand the right-hand side of Eq. (33) into a series also: 

i 

RHS=K2,(x)(1- •0)•,= • Ceq sin(k•x)sin(keY), 
(36) 

with 

i) 4 CL• t'Lb I - •oo Ceq-LaLb J0 J0 K2"x)[ 1 
X •i sin(kex)sin(kqy)dx dy. (37) 

As /3(x) is zero except in the small area L•L• around 
(x0,Y0), we assume that • and the two sinusoidal functions 
are essentially constant over this small region of integration. 
As a preliminary approximation, we use their values at the 
point (xo,Y0) to carry out the integration. So the integral 
becomes 

Ceq- L,Lb l-•y 1- •i(xo,Yo) 
X sin(kexo)sin(kqyo) , (38) 

where •i(x0,Y0) represents the value of • at the point 
(x0 ,Y0)- 

We have the expression of •i given by Eq. (22) in case 
two, so Ceq is known. Setting LHS=RHS, expressions for 
Aeq and Bee are produced: 

Aeq= •o L•L•, 1 +• sin(kjYø) 
2 2 2 2 t 

K [(K - k e- kq)G (Xo ,Yo) - (K2/Qo) H' (xo,Yo)] 
X F[(K 2_ 2 2 2 2 2 kp- kq) q- (K IQo) ] 

x sin(kex o)sin(kqy 0), (39a) 

Be•= •o L•Lt, 1 +• sin(kjYø) 
2 2 2 2 • K [(K - k e- kq)H (x o,yo) + (K2/Qo)G'(xo,Yo)] 

F[(K 2- ke 2- kq2) • + ( K2/Qo)2] 
• sin(kexo)sin(kqYo), (39b) 

with 

H(xo,Yo) 

G'(xo ,Yo) = G(xo,Yo) + Qo ' (40a) 

H'(xo,Yo)=H(xo,Yo)- -- 
G(xo,Yo) 

Qo 
(40b) 

G(xo,Yo) and H(x o,yo) represent the value of G and H at 
the point (x o,yo). The expression of G, H, and F are given 
in case two by Eq. (23). 

So we have the solution for •, and also that for •i given 
by Eq. (22): 

•,= • (Avq+ iBvq)sin(kr, x)sin(kqy ), (41) 
pq 

•i = •0 sin(kjy) [(G+ iH)I2F]. (42) 

The total wave will be 

•= ( • + •)exp( iwot ). (43) 

Only the real part of the solution is of interest, which is 
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I •=0 
L• • o 

%=0 

•x 

- Srr•11 width Gaussian s3urce 

œ. exp(iWot)•cp(-(y _ t_•), 

J=l J=2 J=3 

J=l J=2 J-3 

F{G. 1. Boundary conditions of case four, where a Gaussian vibration 
source is applied to a two-dimensional object. 

G Re(•)= e0 sin(k/y) • 

+ • Apq sin(kpx)sin(kqy)) cos(woO pq 

- e 0 sin(k/y) 

+ • Bpq sin(kvx)sin(kqy)) sin(woO. Pq 

Also of interest is the amplitude of the vibration, 

AmpRe(O = e o sin(k/y) 2F 

q- Z Apq sin(ktrr)sin(kqy) ) 2 pq 

H + e o sin(k/y) 2F 

\ 21112 

q- Z Bpq sin(kpx)gin(kqy)) ] . pq 

(44) 

(45) 

I-. Case four 

The case of the inhomogeneous, 1ossy medium with 
Gaussian source (shown in Fig. 1): Based on case three, we 
model the vibration source as Gaussian extended source, 
which is more plausible for some experimental setups. 

We have a rectangle with dimension L•XL o . On the 
boundaries x TM 0, y = 0, and y = Lo, the boundary condition 
is •=0. The fourth boundary x=La satisfies 
•=% exp(iwot)exp[- (y-Lo12)2/2(otLb)21. ot is a small 
number (no more than 0.11), so the source is a small width 
Gaussian. e 0 is a real constant. The material is 1ossy. The 
inhomogeneous area is around (x 0,y0). 

Solution: The approach is to decompose the Gaussian 
boundary condition into a sinusoidal boundary condition, ob- 

Gaussian function 

FIG. 2. Comparison of the functions that are used to compose the Gaussian 
SOUrCe. 

tain the solution for each sinusoidal component, and then 
apply superposition. In this case, we may decompose the 
Gaussian function into 

J,r Jrr 
= • C/sin y +Di COS y . (46) 

Y=0 

If the Gaussian is centered on the midpoint y = Lb/2, and is 
assumed to approach zero at the extremes of the rectangle, 
then we could decompose that Gaussian only into sine func- 
tions (refer to Fig. 2): 

•o J'rr 

exp[-(Y- •---•)2 /2(otL•,'2l--j•=o CjSin('•-• Y ) . 
(47) 

C/is given by 

Cs=L• f•sin(•Y) 

Changing the integral variable y-L•12-,y, the above equa- 
tion becomes 

(49) 

As a is assumed to be no more than 0.11, the exponential in 
the integral goes almost to zero at y = z L•/2, and it becomes 
even smaller when [y[ >Ld2. So as a reasonable approxima- 
tion, we could extend the limit to too with little effect on the 

value of C/: 
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2 J•r _•_) ] exp( 2 (.•0) 2) dy ' 
(50) 

Now this is in the form of a known integration (Gradshteyn 
and Ryzhik, 1965): 

_•o sin(p (x + •b))exp( - q2x2)dx 

(3) 'f• sin(p •b)exp . (51) 
q 

So the expression of Cj is 

Note that Cj is 0 for J = 0,2,4 ..... That is easily understood 
by analyzing the symmetry property. Our Gaussian function 
is even symmetric with respect to the point y = Lol2, so we 
expect the odd-symmetric components to be zero. Please 
note that 

C•O as j-•oo 

and the decay is square exponential, which provides rapid 
convergence. So in computer simulation, we could truncate 
the series (47) at a reasonable 

For the sake of emphasis, we rewrite the decomposition 
equation (47) here: 

=•o exp(iwot)• C2J-I sin[ '•0 Y ' J=l 

(53) 

Case three gives the solution when the source term is a sine 
function e o exp(iwot)sin[(JrrlL•)y]. So the solution for the 
Gaussian source is easily obtained by adding up the results 
of those sine functions, weighted by the coefficient Cj. Us- 
ing Eq. (43), our final solution is 

• = exp(iw0t ) • C2s- • ( •(2J- •)i + {•(2J- •)•). 
J=l 

(54) 

Here •{2J-•)/ means the incident wave of the (2J-1)th 
component, and •(2J-l)s the scattered wave of the (2J- 1 )th 
component. The expressions below also contain the index 
(2J-1 ), and it is understood as indicating the (2J-1 )th 
component. 

Only the real part is the solution, which is 

Re(•)=cos(w0t)• C2j-I e0 sin(k2j-ly) 2F2j_i J=l 

• ( H2j- l -sin(wot)• C•_• eo sin(k2•-•Y) 2Fe•_• J•l 

The amplitude is given by 

-- -I- • A(2 J_ l)pq sin(k(2j_ opx)sin(k(2j !)qY)) pq 

-- -1- • B(2J- 1 )pq sin(k(2j- ! )t• x ) sin(k(2 J_ 1 )qY ) )- pq 

(55) 

(56) 

G. Examples 

To visualize the vibration solutions derived above, we 
simulated some solutions to the different cases (refer to Fig. 
3). The first three are for the case of a homogeneous, lossy 
medium with a Gaussian source. The last three are the case 

of an inhomogeneous, lossy medium with a Gaussian source, 
using the same parameters as the first three, except for the 
inclusion of a discrete inhomogeneity. The parameters are 
selected to coincide with phantom experiments given in Sec. 
II of this paper. 

A rectangle with dimensions L,,XLo=5 cmX4.5 cm is 
considered. On the boundaries x= 0, y = 0, and y---L•, the 
boundary condition is •=0. The fourth boundary x=La sat- 

isfies •=eo exp(iwot)exp[-(y-Lo/2)2/2(aL•,)2], where 
or=0.06. The medium is 1ossy, where Qo of the system is 4.0. 
The speed of sound, C 0, is set to 3.79 m/s (Huang, 1990). 
For the inhomogeneous case, the inhomogeneity is located at 
x= 1.9 cm, y=3.3 cm, and it has a area ofL,L o , which is 
0.013 of LaL • . The tumor stiffness E• is 8 • E 0, the stiffhess 
of the surrounding tissue. The source frequencies are 60, 
100, and 200 Hz, respectively. 

For the homogeneous cases, the simple eigenmodes are 
clearly seen to be a function of frequency, and the damping 
results in a loss of amplitude away from the source (on the 
right-hand side). We could see very clearly that for the inho- 
mogeneous cases, the "tumor" region has a localized dismr- 
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(d) (e) tO 

FIG. 3. Shear wave vibration (amplitude) in a 1ossy elastic medium with 
Gaussian soume. Vibration is applied at the right-hand boundary. (a)-(c) are 
the modal patterns in a homogeneous medium, with the vibration frequen- 
cies of 60, 100, and 200 Hz, respectively. (d)-(f) are vibrations in a similar 
medium with a hard tumor (discrete inhomogeneity) located in the lower 
middle region. This inhomogeneous medium is vibrated at the same three 
frequencies as in the homogeneous examples. Note the distinct circular de- 
fect produced by the tumon 

bance in the vibration pattern, as compared with the corre- 
sponding homogeneous case. 

H. Energy curve 

To gain a better understanding of the system response 
under different source frequencies and boundary conditions, 
we also plotted the so-called energy or frequency response 
curve. 

The energy of the vibrating system is proportional to the 
sum of the square of the amplitude at every point. Using Eq. 
(25), we plotted the sum of amplitude squared versus the 
source frequency f0 (f0 = w0/2'n'), and the excitation mode J 
that controls kj [and the boundary condition 
•=e 0 exp(iwot)sin(kjy)]. The model is taken from case two, 
where a homogeneous rectangle L aXLb=5 cmX6 cm, on 
boundaries x=0, y=0, and y=L b, the displacement s c is 
zero. On the fourth boundary x = L,,, •= e o 
Xexp(iwot)sin(kjy). The material 1ossy factor is 4.0. 

The results are given in Fig. 4 for constant displacement 
e 0 of the source. This demonstrates that the largest response 
is obtained from the lowest order modes, where the fre- 
quency and source shape ]natch the natural eigenmode of 
that eigenfrequency. At the higher frequencies, the loss 
mechanisms damp the total energy and the response. 

II. EXPERIMENTS AND COMPUTER SIMULATIONS 

A. Phantom experiments 

Phanto]ns were used to study the possibility of tumor 
detection by sonoelasticity. As the theory given earlier is two 
dimensional, we constructed long rectangular phantoms. The 
dimension of the phantom was about 5 cmž5 cmX30 cm 
(widthXheightXlength). Two kinds of experiments were 
conducted. The first employed a homogeneous phantom; the 
second included an inhomogeneity. The homogeneous phan- 
tom was consttucted using 500 g of water, 500 g of ethylene 
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FIG. 4. Energy curve showing the ti'equency response of a 1ossy, homoge- 
neous elastic medium with difl'erent source excitation modes. 

glycol, 70 g of gelatin, 100 g of glycerol, 100 g of formalin, 
and 10 g of barium sulfate. A gel phantom (1.5% agar, 1.5% 
gelatin, 0.1% barium sulfate) was used for the second experi- 
ment. A harder gel tube (3% agra; 3% gelatin, 0.1% barium 
sulfate) was buried in the phantom as the inhomogeneity. 
The Young's modulus of the hard gel tube was about 4• that 
of the phantom (Huang, 1990). The diameter of the h•trd gel 
tube was 0.6 cm. Figure 5 shows a .sketch of the inhomoge- 
neous phantom. 

A sketch of the experiment setup is drawn in Fig. 6. The 
ultrasound transducer; a linear array 7.5 MHz (L738) from 
Acuson (Mountain View, CA), was positioned at 45 ø with 
respect to the top (Y= 0 cm plane) boundary, and so was able 
to detect the vibrations of the X-Y plane along the Z axis. 
The vibration was applied by a minishaker type 4810 (Br/.iel 
& Kj•er, Denmark) from the side of the phantom (the X= 5 
cm face in Fig. 6). The vibration direction was along the Z 
axis. The diameter of the tip of the vibrator was about 0.5 
cm, and the contact area extended 2 cm in the Z axis. Rigid 
surfaces covered the phantom to ensure a rigid boundary 
condition, except for the location of the imaging tJansducer 
(center of Y = 0 cm plane) and the vibration source (center of 
X--5 cm plane). The amplifier was a power amplifier type 
2706 (Br•el & Kja•r, Denmark). 

The real-time images on the Acuson machine are con- 
venttonal B-scan, but with the addition of specially modified 
green scale overlay. The green scale represents the standard 

Inhomogeneity tube 

FIG. 5. Inhomogeneous phantom. 
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FIG. 6. Sketch of the experiment setup. 

deviation of spread of Doppler spectrum, theoretically re- 
lated to vibration amplitude (Huang, 1990). For any point on 
the image, if the green is on, it means that the vibration there 
is above threshold; if the green is off (normal speckle), it 
means that the vibration at that position is below threshold, 
which is approximately 0.02-mm displacement. Also, the 
brightness of the green scale is proportional to the amplitude 
of the vibration. For printing reproducibility, we converted 
the green images to black and white images for all the ex- 
periment results shown with normal B-scan speckle sup- 
pressed (lowered to dark gray values). Thus the brightness of 
the gray scale is proportional to the amplitude of the vibra- 
tion. Some filtering with a small kernel has been applied to 
remove small artifacts due to noise. This gives a similar im- 
pression as watching a real-time image, where the noise 
tends to be averaged over sequential frames. 

For the homogeneous phantom, the results of three dif- 
IErent vibration frequencies, 59, 83, and 191 Hz, are given in 
Fig. 7. Clearly the 59-Hz excitation produces a 1:1 [node 
modal pattern; the 83-Hz excitation produces a 2:1 mode 
modal pattern; the 191-Hz vibration results in finer mode 
modal pattern. 

For the inhomogeneous phantom, we show the images 
of two different vibration frequencies: 37 and 201 Hz (see 

Fig. 8). Notice tile black middle upper part is just where the 
inhomogeneity was located, and that region shows a visible 
deficit of vibration. 

B. Computer simulations 

To check tile validity of our theory, compnter simula- 
tions were compared with the experimenl results. The vibra- 
tion plunger for the experiment was cone shaped; however; 
in computer simulations the boundary condition for that 
boundary was approximated as a Gaussian source. We as- 
sume this Gaussian source fitIls essentially to zero at the 
ends. The other three boundaries are rigid. The idea is dem- 
onstrated in Fig. I. 

1. Homogeneous case 

The theory of tile case two, a homogeneous, 1ossy me- 
dium, was used to calculate the vib,-ation patterns for the 
homogeneous case study. 

As the dimensions of onr homogencous phantom were 
5.1 cm X4.5 cm X30 cm (width X heightž length), so L,• = 5. I 
cm and L/,=4.5 cm. The lossy fitclot' Q0 was empirically set 
to 6.0. The speed of sound was set to 2.8 m/s, similar to the 
measured values found by Hnang (1990). As the diameter of 
the tip of the vibration source was about 0.5 cm, and the 
homogeneous phantom had a width of 4.5 cm, the Gaussian 
source half-width parameter cr was set to 0.5/4.5=0.11 (see 
case fot, t in Sec. I for the definition of o0. The results of the 
simulation at three different sonrce frequencies are shown in 
Fig. 9. These modal patterns demonstrate a reasonable cor- 
respondence to those from the experiment in Fig. 7 over the 
vibration frequency range of 59-191 Hz. 

2. Inhomogeneous case 

The theory of case four, an inhomogeneous, 1ossy me- 
dium, was nsed to calculate the vibration patterns for the 
inhon•ogeneous phantom study. 

As the dimensions of our inhomogeneot,s phantom were 
5.1 cruX5.0 cruX30 csn (widthXheightXlength), so L,,=5.1 
cm and Lt,=5.0 cm. The diameter of the inhomogeneity 
tube was 0.6 cm, so the tnmor area Lj•L/, [defined in Eqs. 
(38) and (39)'[ was 0.283 cm 2. The inho,nogeneity location 

{a} (b) (c} 

t'IG. 7. Homogeneous phantom xibration pattern. The source vibration is located on the right-hand side of Ihe images. Source vibralion frequency • (a) 59. 
(b) 83. and (c) 191 Hz. 
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FIG. 8. Inhomogeneous phantom vibration pattern. The source vibration is 
located on the right-hand side of the images. The inhomogeneity is located 
tin the middle upper prat of lhe images, which shows little or no vibration 
(black area). Source vibration frequency is (a) 37 and (b) 201 Hz. 

(xo,Y0) was (3.0 cm, 2.3 cm). As the Young's ntodulus of the 
inhomogeneity was 4X that of the phantom, the y in Eq. (13) 
was 3. The 1ossy factor Q0 was empirically set to 3.0. The 
speed of sound was set to 2.8 m/s, and the Gaussian source 
width parameter a was set to 0.1. Equation (56) was used to 
generate the vibration amplitude. Notice that in Eq. (56) 
there are summations over p and q. These series were trun- 

cated at p=q=30. Looking at the expressions for Apq and 
Bt, q given by Eq. (39), the denominators are proportional to 
the fourth power of k• and kq, and the numerators are pro- 
portional to the square of kp and kq. When p and q are large 
enough so that kp and kq>>K; also, k• 2 and k•>;> 1, we could 
treat A•q and Bpq as zero. In our case, K is always less than 
660, while k/, and kq ate around 1800, when p=q=30; also 
k• and k• are greater than 106, so it is reasonable to approxi- 
mate Av• t and B•q as zero when p and q are above 30. 

The theoretical results are shown in Fig. 10 for the same 
two fiequencies as used in the Fig. 8 experiment. The inho- 
mogeneity appears as a dark region, which indicates low 
vibration amplitude. The patterns are similar to those shown 
in the experiments. 

C. Energy curve 

In the phantom experiments, we varied the vibration fre- 
quency from 20 to 400 Hz, while keeping the amplitude of 
the vibration source constant. We noticed that the vibration 

response of the phantom was frequency dependent. At some 
frequencies, the phantom showed greater response to the ap- 
plied vibration, producing an increase in the brightness and 
extent of the green scale overlay. hi a hontogeneous phantom 
the two strongest response peaks were observed at source 
frequencies of 37 and 56 Hz. Referring to the energy curve 
subsection of Sec. I, we calculated the theoretical energy 
response for the conditions of this experiment. Figure 11 
shows the energy curve for the case where L, = 5.1 cm and 
Lt,= 5.0 cm; the 1ossy factor is Q0=3, the speed of sound is 
2.8 m/s, and the Gaussian source half-width parameter o• is 
0.1. We can see that the highest two peaks are predicted to be 
at 35 and 59 Hz, which closely matches the two peaks ob- 
served in the experiment. 

D. Applications to in vivo imaging 

To further examine the ability of our theory, we con- 
ducted a liver scan experiment on a volunteer from whom 
informed consent had been obtained. Low-fi'equency (about 
20 Hz) vibration was applied to the right side of the midab- 
domen. The vibration was conducted into the liver. The vi- 

bration of the liver was sensed by a 3.5-MHz ultrasound 
transducer (V328) fi'ont Act, son (Mountain View, CA). The 
vibration image is shown in Fig. 12, where the sensitivity of 
the color intaging system was turned down so as to eliminate 
breathing and cardiac motion color. 

The simulation model for the liver used the homoge- 
neous model, case two in Sec. I, with a Gaussian source. 
was taken to be 30 cm, and L,, was 10 cm. The 1ossy factor 
Q0 was empirically set to 3.0. The speed of sound was set to 
2.8 m/s. The Gaussian source half-width parameter o• was set 
to 0.1. The simulation result is shown in Fig. 13. Although 
this model neglects the layered abdominal wall, the irregulm- 
liver shape, and ill-posed boundaries, comparing the results 

[a} (b) (c) 

FIG. 9. Theoretical homogeneous vibration pattern. The source vibration is located on the right-hand side o[ the images. Source vibration œrequency is (a) 59. 
(b) 83, and (c) 191 Hz. 
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lqG. 10. Theoretical inhomogeneous vibration pattern. The soume vibration 
is located on the right-hand side of the images. The inhomogeneity is lo- 
cated on the middle upper part of the images., which shows little or no 
vibration (black area). Soume vibration frequency is (a) 37 and (b) 2(}1 Hz. 

with Fig. 12, the patterns are similar and display simple 
modal patterns that are indicative of vibration within a rela- 
tively homogeneous medium. 

III. CONCLUSION 

A basic model for sonoelasticity imaging is presented, 
using a "sonoelastic Born approximation" for shear waves in 
tissue with a small stiff tumor. Solutions are presented for 
two-dimensional cases with regular geometries. The results 
are encouraging for successful exploration and clinical appli- 
cation of sonoelasticity imaging. First, for the geometries 
and parameters given above, "tumors" with area as small as 
0.005 of the surrounding tissue are detectable in ideal imag- 
ing circumstances assuming the tumor stiffness is at least a 
factor of 3 times greater than the surrounding "tissue." That 
is, the presence of the small tumor produces an approximate 
20% drop in vibration amplitude. This is easily detectable in 

o 

•o 

o 

o 
o 

Frequency 

FIG. I I. Theoretical energy curve. The first two peaks (35 and 59 Hz. 
indicated by the arrows) were observed in experiment. 

FIG. 12. Liver scan experiment. The oriematlon of the ,•can is such that the 
anterior abdominal muscles are located at the top of the image, the dia- 
phragm at the boUom. Image ,h.ws only regime,, of vibu•tion •ithin the 
right I.be .f a normal live•. 

the "ideal" case where quanti/ation noise from an 8-bit im- 
aging system is the dominant noise. This assumption is well 
justified by previous studies such a• Parker et al. (1990) and 
Huang (1990). This implies that, under ideal imaging condi- 
tions, a 3-mm stiff tumor can be visualized in a 5-cm organ 
such as the prostate. Second, the "energy curve" shows that 
low-order modes (which are easy to visuali/e and interpret) 
are easily produced by simple sonrces. Higher-order ntodes 
are more damped but have a very regular response over a 
range of frequencies. Both feattu'es may be t, seful in charac- 
terizing properties of the breast, liver and other organs using 
SOhOelasticity imaging. 

Sonoelasticity imaging was performed on phantoms and 
liver in vivo. Results were compared agaiuq theoretical pre- 
dictions. The theory was found to satisfactorily predict the 
essential l•atures of sonoelasticity imaging. These include 

FIG. 13. Liver scan simulation usiug our theory tbr a homogeneous. 
bounded medium with a Gaussian vibratkm stmrce. 
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the production of large well coupled modes at low vibration 
frequencies. Also, the disturbance produced by a discrete in- 
homogeneity is confirmed by theory and experiments. The 
whole liver has sufficiently homogeneous regions that can 
exhibit broad, low-frequency modal patterns. Bol:h theory 
and phantom experiments might be useful in optimizing vi- 
bration and imaging systems such that small, discrete, hard 
tumors can be routinely identified in clinical applications of 
SOhOelasticity imaging. 
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